A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation
نویسنده
چکیده
We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design. Keywords—Backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems.
منابع مشابه
Boundary Control of Reaction-Diffusion PDEs on Balls in Spaces of Arbitrary Dimensions
Abstract. An explicit output-feedback boundary feedback law is introduced that stabilizes an unstable linear constant-coefficient reaction-diffusion equation on an n-ball (which in 2-D reduces to a disk and in 3-D reduces to a sphere) using only measurements from the boundary. The backstepping method is used to design both the control law and a boundary observer. To apply backstepping the syste...
متن کاملExplicit Output-feedback Boundary Control of Reaction-diffusion Pdes on Arbitrary-dimensional Balls
This paper introduces an explicit output-feedback boundary feedback law that stabilizes an unstable linear constant-coefficient reaction-diffusion equation on an n-ball (which in 2-D reduces to a disk and in 3-D reduces to a sphere) using only measurements from the boundary. The backstepping method is used to design both the control law and a boundary observer. To apply backstepping the system ...
متن کاملInverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions
This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...
متن کاملBoundary Stabilization of a 1-D Wave Equation with In-Domain Antidamping
We consider the problem of boundary stabilization of a 1-D (one-dimensional) wave equation with an internal spatially varying antidamping term. This term puts all the eigenvalues of the open-loop system in the right half of the complex plane. We design a feedback law based on the backstepping method and prove exponential stability of the closed-loop system with a desired decay rate. For plants ...
متن کاملBoundary Controllers and Observers for the Linearized Schrödinger Equation
We consider a problem of stabilization of the linearized Schrödinger equation using boundary actuation and measurements. We propose two different control designs. First, a simple proportional collocated boundary controller is shown to exponentially stabilize the system. However, the decay rate of the closed-loop system cannot be prescribed. The second, full-state feedback boundary control desig...
متن کامل